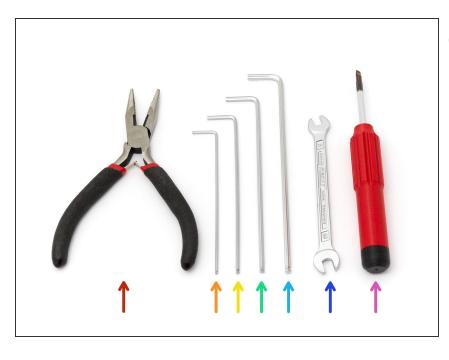
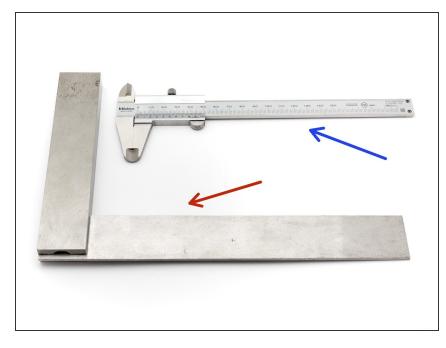

Bear Lab

01. Tools

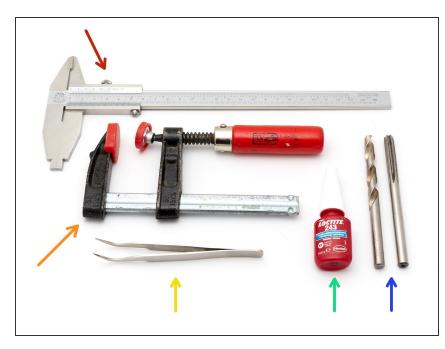
Written By: Grégoire Saunier



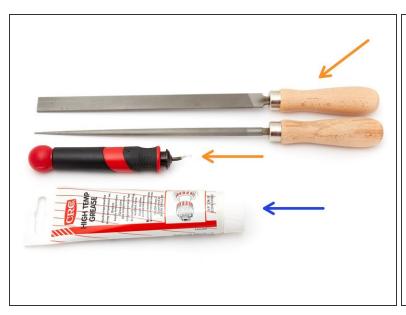
Step 1 — No power tools


- ♠ Do not use power tools for the whole assembly or you might damage hardware. Always use hand tools.
- i Tightening torque values recommended:
 - Max 4.5Nm for M5 screws on metal to metal assemblies (e.g. joining plate on an extrusion).
 - Max 1.5-2Nm for M5 screws on printed part to metal (e.g. y_rod_holder.stl on extrusion).

Step 2 — Mandatory tools


- This step and the next one list the mandatory tools you need to build the Bear frame.
 - Small pliers with cutting capabilities
- Hex key 1.5mm for MK2(S) and MK2.5(S) only, not useful for MK3(S).
- Hex key 2mm.
- Hex key 2.5mm. Ball end would be very useful.
- Hex key 3mm.
- Spanner 5.5mm
- Slotted screwdriver #1

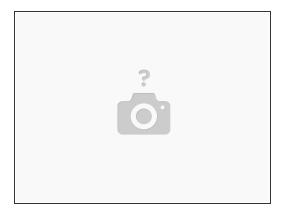
Step 3 — Mandatory tools


- This step and the previous one list the **mandatory** tools you need to build the Bear frame.
 - Having a quality square will help you to build the Bear precisely. We recommend a 200mm long machinist precision square, ideally with standard DIN 875 / BS 939 (any grade).
 - i If you don't have such a square or want to use a lower quality one, check these videos on how to test and fix your square:
 - How to Square a Square by Wesley Treat: https://youtu.be/FNpAQHrNpN
 U
 - How to Square a Square and Make it True by Wood By Wright: https://youtu.be/enEYzTXg2Jg
- Caliper, 150mm long minimum. If you don't have a caliper you can use a steel ruler. (A vernier caliper is generally more accurate than a digital caliper, at the same price point.)

Step 4 — Optional tools

- This step and the next one list the optional tools that can be helpful during assembly. You can build the Bear frame perfectly without them.
- Sorry for this extra list, we love tools...
- A long caliper of 200mm or more helps to align the Y axis smooth rods spacing on any "Prusa type" printer.
- A general purpose clamp will facilitate the squaring of the frame when using a machinist square.
- Tweezers are always useful :)
- You can add a dab of blue Loctite #243 to the screws during assembly to prevent them from unscrewing.
- An 8mm drill bit or 8mm reamer can be useful in case the smooth rods holes on Z axis are a bit too tight.


Step 5 — Optional tools


- (i) This step and the previous one list the **optional** tools that can be helpful during assembly. You can build the Bear frame perfectly without them.
- Files and deburring tool can be helpful to clean the printed parts.
- It is good practice to re-grease the bearings during the assembly.
 - (i) We recommend the use off a lithium based lubricant that has a viscosity between 50 and 100mm2/s at 40 °C, NLGI class 2 and a thermal resistance of 100°C or more.
- A torque tool can be useful to ensure you apply max torque without damaging hardware.
 - (i) We recommend max 4.5Nm for the metal to metal assemblies (e.g. joining plate on an extrusion) and max 1.5-2Nm for printed parts (e.g. y rod holder.stl on extrusion).

Step 6 — Optional parts

- Before starting to disassemble your printer, did you see we have a list of optional parts for the Bear frame?
 - Official optional parts
 - Community's optional parts

Step 7 — Next chapter

- Congratulations you have finished this chapter and are ready to start with the disassembly :-)
- Got to the next chapter: <u>02. Preflight check and disassembly</u>